Yuan Hsi (Tommy) Chou

(236)-979-3362 • yuanhsi@ece.ubc.ca • 089-6335 Thunderbird Crescent Vancouver, BC V6T 2G9

Education

University of British Columbia	
Ph.D. Candidate in Electrical and Computer Engineering	Expected 2024
Current research: GPU ray tracing acceleration	_
Supervisor: Dr. Tor M. Aamodt	
University of Michigan, Ann Arbor	
Master of Science in Engineering, Electrical and Computer Engineering	April 2019
Coursework: Integrated Circuits & VLSI	GPA: 3.79/4.00
University of Texas, Austin	
Bachelor of Science in Engineering in Electrical & Computer Engineering	May 2017
Coursework: Integrated Circuits, VLSI, Digital Signal Processing	GPA: 3.52/4.00
Publications	

[1] M. Saed, Y. Chou, L. Liu, T. Nowicki, and T. M. Aamodt, "Vulkan-Sim: A GPU Architecture Simulator for Ray Tracing, " IEEE/ACM International Symposium on Microarchitecture (MICRO), 2022.

- [2] M. Saed, Y. Chou, L. Liu, T. Nowicki, and T. M. Aamodt, "Vulkan-Sim: A GPU Architecture Simulator for Ray Tracing," IEEE/ACM International Symposium on Microarchitecture (MICRO), 2022.
- [3] L. Liu, W. Chang, F. Demoullin, **Y. Chou**, M. Saed, D. Pankratz, T. Nowicki, T. Aamodt, "Intersection Prediction for Accelerated GPU Ray Tracing," IEEE/ACM International Symposium on Microarchitecture (MICRO), 2021
- [4] **Y. H. Chou**, C. Ng, S. Cattell, J. Intan, M. D. Sinclair, J. Devietti, et al., "Deterministic atomic buffering", IEEE/ACM International Symposium on Microarchitecture (MICRO), 2020
- [5] Y. H. Chou and S. L. Lu, "A High Performance, Low Energy, Compact Masked 128-Bit AES in 22nm CMOS Technology," International Symposium on VLSI Design, Automation and Test (VLSI-DAT), 2019.
- [6] Y. H. Chou, T.L. Hsieh, C.Y. Tsai, C.C. Wang, L.T. Hwang, "An Ultra Low Loss SerDes Signal Design on a FC Package Applied in 56Gbps Networks," IEEE Electronic Components and Technology Conference, 2016
- [7] S.C. Hsieh, C.Y. Kung, T.C. Lee, C.H. Chen, C.C. Wang, Y.H. Chou "Compact Size and Low Profile IPD Diplexer Design Applied on Wireless Module of Mobile Phone, " International Conference on Electronic Packaging Technology, 2016

Skills

Programming Languages	C, C++, Verilog, Python, MATLAB
Graphics APIs	Vulkan, OpenGL
Architectural Simulators	GPGPU-Sim
Hardware Design Tools	Virtuoso, VCS, Innovus, Design Compiler, HSPICE, CustomSim, ModelSim, Quartus, HFSS
Spoken Languages	English, Mandarin

Work Experience

Huawei Research Center, Vancouver, Canada

Associate Engineer, Intern

• Improved denoiser quality and performance for ambient occlusion, reflection, and caustics effects in a hybrid renderer (rasterization + ray tracing) using Vulkan API

University of British Columbia, Vancouver, Canada

Graduate Research Assistant

- PhD student supervised by Dr. Tor M. Aamodt
- Research area in GPU graphics, ray tracing acceleration, and hardware modeling/simulation
- "Deterministic Atomic Buffering" published in MICRO 2020

June 2019 - Now

May 2021 – Aug 2021

"Intersection Prediction for Accelerated GPU Ray Tracing" accepted in MICRO 2021

Teaching Assistant

Teaching assistant for CPEN 211 (2019, 2020), CPEN 311 (2019, 2020, 2021, 2022), CPEN 391 (2021) •

Taiwan Semiconductor Manufacturing Company (TSMC), Hsinchu, Taiwan

Intern – Design Technology Platform (DTP)

- Designed a high performance compact masked AES core in TSMC 22nm technology •
- Performed DPA and CPA side channel attacks on the implemented design with CustomSim simulation •
- Research paper accepted in VLSI-DAT 2019 conference •

Advanced Semiconductor Engineering Inc. (ASE), Kaohsiung, Taiwan

Intern - RF Design Team

- Designed low loss baluns through HSPICE and 3D EM simulations •
- Studied trends on front end modules for mobile devices based on market research and technology analysis reports •
- Received outstanding paper award on a submission to ICEPT 2016 •

Intern - Electrical Lab

- Developed a trace structure used in flip chip packaging that achieved low insertion loss at high frequencies •
- Conducted 3D EM simulations with ANSYS HFSS, O3D, SIwave on chip packages •
- Research paper accepted in IEEE ECTC 2016 conference •

Intern - Stress-Thermal Lab

- Performed thermal stress tests on packaged chips for estimating device lifetime
- Assisted with data analysis and making experiment reports •
- Translated technical documents from English to Mandarin •

Related Coursework

University of Michigan, Ann Arbor

EECS 627 – VLSI Design II

High Performance AES Engine with Side Channel Protection

- Designed a highly pipelined AES engine with side channel protection using RDVFS in Verilog •
- Completed VLSI design flow from Verilog to synthesis to APR using industrial tools •

EECS 570 - Parallel Computer Architecture

Parallel Banded Smith-Waterman Accelerator

- Designed a compact parallel banded Smith-Waterman accelerator based on systolic array for genome sequencing •
- Achieved significant power and area advantage over GPUs in global alignment for genome sequencing applications •

EECS 425 – Integrated Microsystem Laboratory

- 3-Axis Force Balanced Accelerometer Using a Single Proof-Mass
- Designed and fabricated a 3-axis accelerometer MEMS sensor in COMSOL with SoG technology •
- Designed and fabricated a sigma-delta modulation interface circuit in Cadence with ED-NMOS technology •

EECS 427 - VLSI Design I

DICE-SECDED Based Reliable Register File

- Designed a 16x16 resilient register file using DICE and SECDED techniques from reading research papers •
- Completed layout and characterization of the register file in Virtuoso •

EECS 470 – Computer Architecture

P6 Style Out of Order 3 Way Superscalar RISC Processor

- Implemented a 3 way superscalar out of order processor in P6 style in Verilog
- Includes features such as store to load forwarding, next-line prefetching and victim cache to increase performance •

June 2018 - August 2018

May 2015 - August 2015

May 2014 - August 2014

Sept 2019 - Now

June 2016 - August 2016

University of Texas, Austin

Senior Design Project - ATE to Verilog Translator

- Created a bidirectional software language translator between C++ and Verilog-AMS using a Python script
- Established the connection between Texas Instruments Teradyne Eagle ATE test programs and Verilog simulations for consistency in design and verification
- Worked in a student team in collaboration and mentored by Texas Instruments

EE 460M - Digital Systems Design Using HDL

- Implemented and modified a MIPS processor with Verilog on a FPGA
- Worked with IO interfaces such as USB and VGA to communicate with a FPGA

EE 445S - Real-Time Digital Signal Processing Laboratory

- C programming and measurement of communication and DSP systems through a DSP chip with the use of oscilloscope
- Theory and implementation of sinusoidal wave generation, FIR and IIR filters, PN sequences and data scramblers, PAM and QAM data transmission and reception